Options

Version 2.1

Adults/Children:

• Continuous Positive Airways Pressure (CPAP) - positive pressure throughout resp cycle.

Non-Invasive Positive Pressure Ventilation

• Bilevel Positive Airways Pressure (BIPAP) - 2 levels of pressure insp & exp (IPAP > EPAP) Neonates: Nasal CPAP (NCPAP)

Infants: High Flow Nasal Cannulae (HFNC) - humidified high flow rates generate some NCPAP.

Benefits

- \downarrow Intubation, \downarrow Cx of intubation (airway trauma, sedation, nosocomial infection), \downarrow LOS
- \uparrow lung vol, \uparrow FRC, \uparrow TV/minute volume
- \downarrow WOB, splints airways open, \downarrow V/Q mismatch, and \uparrow CO by \downarrow pre-/afterload

Indications

- Best if reducing the work of breathing will likely address an acute & reversible cause.
- Acute on chronic ventilatory failure (PaCO2>50mmHg) or hypoxaemia (PaO2/FiO2<200).
- Requires a patent airway and intact respiratory drive.

Contraindications

- Cardiac/respiratory arrest
- Hypotensive shock, acute MI
- *LOC* or unprotected airway

Recommended Indications

Primary:

- COPD
 - o BIPAP & CPAP useful
 - Failure more likely if GCS<11, pH<7.5 or RR>30
- APO/CCF
 - CPAP or BiPAP (but no evidence BiPAP is better)
 - Improves symptoms and ↓mortality
 - PEEP may worsen CO in cardiogenic shock

Other (less evidence):

- Immunosuppressed
- Palliative/elderly
- Post-op/post-extubation
- Asthma

- Neuromuscular disease
- Partial upper airways obs
- Thoracic trauma
- Obesity hypoventilation

Settings

CPAP: Start at $5cmH_2O$ and \uparrow in $2cmH_2O$ increments BIPAP: Start 8-10/3-4

- In hypoxaemia: \uparrow EPAP in 2cmH₂O increments and \uparrow IPAP to maintain 1:2.5 ratio
- In hypercarbia: \uparrow IPAP in 1-3cmH₂O increments

NB: Humidify if used \geq 6h. Beware pressures >15cmH₂O as \uparrow Cx.

Complications

- Poor tolerance/agitation in some patients
- \downarrow venous return/pre-/afterload, may $\rightarrow \downarrow$ BP
- Abdominal compartment syndrome
- Air trapping
- Respiratory alkalosis
- Mask: keeping seal, pressure areas

• Vomiting/upper GI bleed or recent upper GI Sx

Version 1.0

Invasive Positive Pressure Ventilation

Control (aka cycle or limit)

Pressure-controlled: Breath determined by achieving a set peak inspiratory pressure (PIP)

- Pro: limits risk of barotrauma
- Con: if compliance of lung changes then hypo- or hyper ventilation may occur
- *Volume-controlled:* Breath determined by delivering a set tidal volume
 - Pro: better control of tidal volume
 - Con: if compliance of lung is high then PIP may be high, risking barotrauma

Volume-Control Modes

Controlled Mechanical Ventilation:

- Ventilator delivers breaths at set rate, patient unable to breathe spontaneously
- For apnoeic, deeply sedated, muscle relaxed patients
- Intermittent Mechanical Ventilation (IMV):

• Ventilator delivers breaths at set rate, but patient able to make unassisted breaths too Assist/Control (A/C) Ventilation or Continuous Mechanical Ventilation (CMV):

- Ventilator has a back-up rate set, and delivers a breath if no patient-initiated breath in time period. Patients may breathe above the set rate, each breath will be assisted.
- Often used in ED patients

Synchronized Intermittent Mechanical Ventilation (SIMV):

- Similar to A/C mode, the ventilator has a back-up rate set, and delivers a breath if no patient initiated breath in time period. Patients may breathe above the set rate.
- However only the set rate of ventilator- or patient-initiated breaths are assisted to the full TV or PIP. Additional patient-initiated breaths above the set rate are not assisted.
- Often used in ED patients

Pressure-Control Modes

Positive End Expiratory Pressure (PEEP) & CPAP:

- Functionally similar
- PEEP is the term used in mechanical ventilation and CPAP during spontaneously breathing
- \uparrow FRC, maintains alveolar patency, \uparrow PO₂, but may \downarrow CO at higher pressures

Pressure Support Ventilation (PSV):

- Spontaneous breathing by patient supported by attaining a set PIP on each breath
- PEEP may be added too, as well as a mandatory back up rate (usually via SIMV)

Indications

- Intubation Failure of ventilation, oxygenation, loss of airway patency or protection.
- Failed NIV

Common Initial Settings

Depends on underlying issues – Lung protection (most situations) or Obstructive lung dz <u>Lung protection</u>: Vol A/C or SIMV – V_T 6-8ml/kg, Insp Flow 60-80ml/min, RR 12-20, I:E 1:2, FiO_2 1.0 & PEEP 5cmH₂O, Plateau Pressure<30cmH₂O

<u>Obstructive lung dz:</u> PSV mode - PIP<40cmH2O OR Vol A/C or SIMV - V_T 8ml/Kg, Insp Flow 60-80ml/min. For both: RR 8-10, I:E 1:4-5, FiO₂ 1.0, PEEP 0-5cmH₂O, Plateau pressure<30cmH₂O

Complications

.

• Intubation trauma

Barotrauma

- Air-trapping/intrinsic PEEP
- ↑WOB if asynchrony of breaths or poor trigger
- Nosocomial infections