Respiratory Failure

Classification:

- May be acute or chronic.
- **Type I** Hypoxaemic respiratory failure: PaO₂<60mmHg (8kPa) with a norm/low PaCO₂. Caused by:
 - Ventilation-perfusion mismatch with either/both:
 - Under-ventilated alveoli (e.g. APO, pneumonia or acute asthma)
 - Venous blood bypasses ventilated alveoli (e.g. right to left cardiac shunts). NB. Hyperventilation will $\uparrow CO_2$ removal but not $\uparrow PaO_2$ as blood leaving unaffected alveoli is already ~fully saturated.
 - o Insufficient FiO2 e.g. Altitude hypoxaemia
- Type II Hypercapnoeic respiratory failure: PaCO₂>50mmHg (6.5kPa) and indicates inadequate alveolar ventilation. Coexisting vent-perf mismatch will affect PaO₂ too.

Causes:

Type I respiratory failure

- Chronic obstructive pulmonary disease
- Pneumonia
- Pulmonary oedema
- Pulmonary fibrosis
- Asthma
- Pneumothorax
- Pulmonary embolism
- Pulmonary arterial hypertension
- Cyanotic congenital heart disease
- Bronchiectasis
- Adult respiratory distress syndrome
- Kyphoscoliosis
- Obesity

Presentation:

Symptoms: The history may indicate the underlying cause, e.g. PND/orthopnoea in pulmonary oedema. Both confusion and reduced consciousness may occur.

Signs: Localized lung findings determined by the underlying cause. Neurological features may include restlessness, anxiety, confusion, seizures, or coma. Hypoxaemia and acidosis may $\rightarrow \uparrow HR$ and arrhythmias. Cyanosis. Polycythaemia is a chronic complication. Cor pulmonale: pulm $\uparrow BP$ is frequently present and may $\rightarrow RVF$, leading to hepatomegaly and peripheral oedema.

Investigations:

- •Bloods: ABG, FBC, (infection, anaemia, polycythaemia), UEC, Trop & CK (MI, myositis)
- •Chest x-ray.
- ECG \pm Echo
- Pulmonary function tests
- Thyroid function tests if myxoedema suspected
- Right heart catheterization: if ?cardiac function, ?volume status, and systemic O_2 delivery.
- Pulmonary capillary wedge pressure may distinguish cardiogenic & non-cardiogenic oedema

Type II respiratory failure

- Chronic obstructive pulmonary disease
- Severe asthma
- Drug overdose, poisoning
- Myasthenia gravis
- Polyneuropathy
- Poliomyelitis
- Muscle disorders
- Head and neck injuries
- Obesity
- Pulmonary oedema
- Adult respiratory distress syndrome
- Myxedoema

Management:

- A patient with acute respiratory failure generally needs admission. Most chronic respiratory failure can be treated at home with oxygen as well as drug therapy.
- Airway: ensure an adequate airway.
- Correction of hypoxaemia: Aim for PaO_2 of 60 mmHg or an arterial $SaO_2 \ge 90\%$.
- Beware prolonged high conc O_2 in COAD as hypoxic drive may maintain ventilation rate.
- •NIPPV for hypoxaemia & hypercapnia
- IPPV last resort esp in chronic sufferers as may be difficult to wean
- Appropriate management of the underlying disease.

Complications:

- Pulmonary: e.g. PE, pulmonary fibrosis, and Cx from use of mechanical ventilation.
- Cardiovascular: e.g. cor pulmonale, \downarrow BP, \downarrow CO, arrhythmias, pericarditis, and AMI.
- •Gastrointestinal: e.g. haemorrhage, gastric distention, ileus, diarrhoea, pneumoperitoneum. Stress ulceration is common in patients with acute respiratory failure.
- •Polycythaemia.
- Hospital acquired infection: e.g. pneumonia, urinary tract infections
- •Renal: acute renal failure and abnormalities of electrolytes and acid-base homeostasis in critically ill patients with respiratory failure.
- •Nutritional: including malnutrition and complications related to administration of enteral or parenteral nutrition. Complications associated with naso-gastric tubes, e.g. abdominal distention and diarrhoea.

Prognosis:

- The mortality rate assoc with respiratory failure varies according to underlying aetiology.
- The mortality rate for adult respiratory distress syndrome is approximately 40%.
- In patients with COPD and acute respiratory failure, the overall mort is approximately 10%.